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Abstract
We study the transport properties of a one-dimensional hard-core bosonic lattice
gas coupled to two particle reservoirs at different chemical potentials which
generate a current flow through the system. In particular, the influence of
random fluctuations of the underlying lattice on the stationary-state properties is
investigated. We show analytically that the steady-state density presents a linear
profile. The local steady-state current obeys the Fourier law j = −κ(τ)∇n

where τ is a typical timescale of the lattice fluctuations and ∇n is the density
gradient imposed by the reservoirs.

PACS numbers: 05.30.-d, 05.60.Gg

1. Introduction

The transport properties of energy or particles in small quantum systems are an important
topic in nonequilibrium statistical dynamics. In particular, the transition between ballistic
and diffusive transport is at the centre of many investigations, attempting to understand from
a microscopical point of view the emergence of the celebrated Fourier law [1, 2]. With
the development of nanoscale technologies, it is now becoming possible to design proper
experiments that can potentially test theoretical predictions for small quantum systems. The
most promising possibilities certainly come from the optical lattice community. For example,
optical lattices can now be used to experimentally generate one-dimensional (1D) bosonic
systems [3–5] which have been studied theoretically for many years [6–8]. In the large
scattering length limit and at low densities, ultracold bosons effectively behave as impenetrable
particles [9], namely as hard-core bosons, thus realising the Tonks–Girardeau model [6, 7].
Experiments on such 1D hard-core bosons have been performed with Rubidium atoms within

1751-8113/10/135003+09$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/13/135003
http://stacks.iop.org/JPhysA/43/135003


J. Phys. A: Math. Theor. 43 (2010) 135003 T Platini et al

both continuum [5] and lattice contexts [10]. For a recent review of developments in ultracold
gases and optical lattices, see [11].

In this paper we present the transport properties of a 1D lattice hard-core bosonic gas
driven out of equilibrium by the interaction at its boundaries with two external reservoirs that
induce a particle-current flow through the system. We remark here that similar studies have
been performed in [12–14]. The particular focus of the present work is the influence of lattice
fluctuations, which may either be induced artificially or be inherent to an experimental set-up,
on the transport properties.

2. Model

The Hamiltonian associated with the hard-core boson model on a linear optical lattice of N
sites is given by

HS =
N∑

l=1

hl +
N−1∑
l=1

Vl. (2.1)

Here the on-site one-particle Hamiltonian is

hl = εb+
l bl = εnl, (2.2)

with a site-independent chemical potential ε coupled to the local occupation number nl = b+
l bl ,

while the hopping potential is

Vl = −tl[b
+
l bl+1 + b+

l+1bl] (2.3)

where the hopping rate tl may depend on the position in the trap. The creation and
annihilation operators satisfy the usual bosonic commutation relations on different sites,
[bl, b

+
l′ ] = [bl, bl′ ] = [b+

l , b
+
l′ ] = 0, while the hard-core constraint is implemented by the

additional conditions b2
l = (b+

l )
2 = 0 and {bl, b

+
l } = 1 preventing more than single occupancy

of sites. Note that through the transformation b+ = (σ x + iσy)/2, where σx,y are the usual
Pauli matrices, the hard-core boson Hamiltonian is exactly mapped onto the XX quantum spin
chain which, in recent years, has been studied extensively in a nonequilibrium context [15].

The bosonic gas inside the trap is coupled at its left and right boundaries to ideal (non-
interacting) hard-core bosonic reservoirs set at different densities nL and nR, described by the
single-particle density matrices

ρL,R = |1〉nL,R〈1| + |0〉(1 − nL,R)〈0| (2.4)

where the labels L and R stand for the left and right reservoirs respectively and |0〉, |1〉
are the associated vacuum and one-particle states. The interaction with the reservoirs is
implemented via a discrete-time repeated interaction scheme which in the continuum limit
leads to a Markovian Lindblad dynamics [16]. See [17] for a useful discussion on the possible
failure of Lindblad dynamics in the description of stationary nonequilibrium properties and the
importance of neglecting the internal couplings. Within the discrete process, at a given time t
only one left reservoir particle and one right reservoir particle, in state ρL and ρR respectively,
interact with the system. These particles interact for a time τ through the hopping potential V0

and VN. After the interaction, i.e. at time t + τ , the system state ρS = TrE{ρ}, obtained after
tracing out the environment degrees of freedom corresponding to the left and right reservoirs,
is given by

ρS(t + τ) = TrL,R{UI (ρL ⊗ ρS(t) ⊗ ρR)UI
†}. (2.5)

Here UI = e−iτHT with the total relevant Hamiltonian given by HT = HS +V0 +VN +h0 +hN+1

where h0,N+1 are the one-particle Hamiltonians of the reservoirs. Note here that HT is of the
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Figure 1. Sketch of the time evolution of the fluctuating optical lattice. Here the left reservoir is
empty while the right one has full occupancy. Local fluctuations, underlined by a short straight
line, enhance the hopping rate locally.

(This figure is in colour only in the electronic version)

form (2.1) with N + 2 sites. The process is then repeated with new reservoir particles such that
(2.5) is iterated further. The net effect of the process, for every timestep τ , is that a boson can
be injected into the trap or escape from it. For example, the extreme limit nL = 0 and nR = 1
describes the injection of bosons from the right of the trap and their escape to the left, i.e. in
this case escape to the right and injection from the left are forbidden.

As mentioned in the introduction, we consider the effect of fluctuations of the optical
lattice which may be induced by some underlying physical process, e.g. vibrations of mirrors,
presence of impurities. We simply model this randomness by allowing that the hopping rates tl
∀l = 0, . . . , N + 1 fluctuate in time within a typical timescale τf . In the following we assume
τf � τ . During the time evolution each hopping rate follows a stochastic trajectory, see
figure 1, which is governed by some known probability distribution.

3. Dynamics

Given an initial equilibrium system state, ρS(0), we start the dynamics by iterating (2.5)
with the evolution operator UI following the fluctuations of the hopping rates. Instead of
solving directly the dynamical equation for the density matrix, we study the time evolution
of correlation functions. Moreover, due to the free-fermionic structure of the model after a
Jordan–Wigner transformation [18],

�l = Al = eiπ
∑l−1

j=1 nj (bl + b+
l )

�N+2+l = −iBl = −ieiπ
∑l−1

j=1 nj (bl − b+
l )

∀l = 0, . . . , N + 1 (3.1)

where the �s are Majorana real (Clifford) operators satisfying �† = � and {�i, �j } = 2δij ,
thanks to Wick’s theorem, one can express all physical observables in terms of the two-point
correlation functions

[G(t)]jk = i

2
Tr{[�k, �j ]ρ(t)}. (3.2)
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In the Heisenberg picture, the time evolution of the Majorana field �, generated by HT, is
simply given by �(t) = e−itT �(0) ≡ R(t)�(0), where T is defined by the Hamiltonian in
terms of the field �: HT = (1/4)�†T �. The matrix elements of the rotation matrix R are
simply expressed in terms of the spectral properties of HT, see [19] for the explicit forms.

We order �† = (�
†
E, �

†
S) such that the first part, �E , is associated with the interacting part

of the environment and the second part, �S , with the components of the system. Projecting
(3.2) onto the system part, one arrives at the fundamental dynamical equation for the system
correlation matrix GS:

GS(t + τ) = RSGS(t)RS
† + RSEGERSE

†. (3.3)

The 2N × 2N matrix RS is that part of the full rotation matrix R = e−iτT =
(

RE RES

RSE RS

)
which

acts on the system. The 2N × 4 rectangular matrix RSE is given by the lower off-diagonal
block of R expressed in the basis (�

†
E, �

†
S). For non-interacting dynamics, i.e. a closed

system, RSE = 0 and the rotation matrix splits into a block-diagonal form where RS and RE

are the rotation matrices of the system and environment part, respectively. In the dynamical
equation (3.3), the bath properties enter only through the initial environment particle states,
encoded in the two-point correlation matrix GE. The correlation matrix GE stays constant in
time since at each step of the repeated interaction procedure the bath particles are replaced by
fresh ones.

4. Steady-state current and density

In the following, we concentrate mainly on the asymptotic properties of (3.3). The steady
state is reached exponentially with a relaxation time depending on the system size N. For the
non-disordered situation the timescale needed to reach the steady state behaves as N3 [20]. In
particular, we focus our attention on the transport properties of the bosonic gas through the
optical trap. For that we compute the density profile and the particle current along the chain.
Since the hopping dynamics conserves particles, one may naturally define the particle current
through the Heisenberg equation of motion for the density:

˙̂nl = i[HS, n̂l] ≡ Jl−1 − Jl (4.1)

where Jl denotes the particle-current operator associated with the lth bond and given by

Jl ≡ tlJl = itl[blb
+
l+1 − b+

l bl+1]. (4.2)

The density n̂l and the current Jl are easily expressed in terms of the Majorana field � and
their expectation values nl = 〈n̂l〉 = Tr{n̂lρ} and jl = 〈Jl〉 = Tr{Jlρ} are given by on-site
and two-site two-point correlation functions GS: nl = (1 − (GS)l,l+N)/2 and jl = (GS)l,l+1.
In the following the stared quantities n∗ and j ∗ have to be understood as expectation in the
steady state.

4.1. Non-fluctuating lattice

If the lattice is free of any disorder, the hopping rates are uniform, i.e. tl = to ∀l. In this case, an
exact solution of the steady state has been given in [21]. It is found that the density profile is flat
except at sites 1 and N which are directly in contact with the reservoirs. The density in the flat
region is given by the mean value set by the reservoirs n∗

l = n̄ = (nL +nR)/2 ∀l �= 1, N while
the boundary values are n∗

1 = n̄−
(to)(nR−nL)/2 and n∗
N = n̄ + 
(to)(nR−nL)/2 with a shift

from the mean value n̄ depending on the density difference nR − nL and where 
(to) = γ 2

1+γ 2

with γ = to/2. The steady-state current j ∗ takes a constant value j ∗ = −α(nR − nL)
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independent of the system size where α is a non-monotonous function of the hopping rate to,
with a maximum current state at to = 2. The size independence of j ∗ signals the ballistic
nature of the transport, which is ultimately related to the integrability of the model, that is to
the equations of motion of the free quasiparticles describing the system. In this case there is
no finite conductivity κ and the system obviously does not obey Fourier’s law. One may note
that this behaviour is very similar to the behaviour observed in the classical Reider–Lebowitz–
Lieb model of a homogeneous harmonic chain [22] in contact with stochastic heat baths at the
boundaries.

4.2. Fluctuating lattice

Next we study the effect of fluctuations of the lattice parameters on the steady-state properties.
We consider local fluctuations in the sense that within the timescale τ of the fluctuation only
one bond is affected leading to an enhancement of the local hopping rate from its unperturbed
value to to a larger value tD, which we choose to be 1/2. Moreover, we take the limit of a
strongly localized lattice gas, with to � 1. In other words, at each timestep τ of the dynamics,
a single bond is activated at random and locally the particles are exchanged with a rate
tD = 1/2, either within the system if the selected bond is a system one or with the reservoirs
if the fluctuations act close to the boundaries. These particle exchanges are reminiscent of
the well-studied symmetric exclusion process [23]; the dynamics (3.3) leads to a non-trivial
dependence of the bulk density gradient on the interaction time τ , as we shall now see.

In the weak-hopping limit to → 0, the dynamics simplify considerably since at a given
time step only one bond is activated. The time evolution of the system is most simply expressed
in terms of Dirac fermions ck = (Ak + Bk)/2 and c+

k = (Ak − Bk)/2. One has in matrix form
c(t + τ) = eitKc(t) where K is the coupling matrix defining the Hamiltonian HT = −c+Kc in
terms of the fermi field c+ = (c+

0 , c+
1 , . . . , c+

N, c+
N+1). Due to the fact that at a given time step

only one bond is non-vanishing, suppose bond l connecting the sites l and l+1, one has the trivial
dynamics ck(t + τ) = eitεck(t) ∀k �= (l, l + 1) and cl(t + τ) = eitε[cos τ

2 cl(t) + i sin τ
2 cl+1(t)]

and cl+1(t + τ) = eitε[i sin τ
2 cl(t) + cos τ

2 cl+1(t)] for the on bond operators.
Consider the density gradient δl ≡ 〈nl+1〉 − 〈nl〉 on bond l. This gradient is changed only

if the activated bond is the lth one or one of the nearest neighbours l − 1 and l + 1. From the
dynamical equation (3.3) in terms of the Fermi operators, if the hopping is enhanced on bond
l then δl is mapped to

δ′
l = δl cos τ + jl sin τ (4.3)

and jl is mapped to

j ′
l = −δl sin τ + jl cos τ. (4.4)

Alternatively, if the activated bond is l ± 1, the updated density gradient satisfies

δ′
l = δl − 1

2 (δl±1 cos τ + jl±1 sin τ − δl±1), (4.5)

while the updated current is given by

j ′
l = jl cos

τ

2
+ Pl (4.6)

where Pl are proportional to correlations across two bonds. As mentioned before, under
this dynamics the system relaxes exponentially towards a current carrying steady state.
Nevertheless, we remark here that the periodicity of the dynamics implies a strong slowing
down of the relaxation to the steady state in the neighbourhood of τ = n2π . Indeed, for
even values of n the dynamical generator maps to the identity and for odd values it maps to a
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reflection dynamics which loses its relaxation properties. In the following analysis we avoid
these special τ values.

In the steady state, the P terms vanish on average and the set of dynamical equations
for the gradient density and current closes. At any given time, the last update on bond l has
probability 1/3 to have resulted from activation on bond l, probability 1/3 to have resulted
from activation on bond l − 1 and probability 1/3 to have resulted from activation on bond
l + 1. Consequently, the steady-state average (denoted by a star) gradient obeys

δ∗
l (cos τ − 1) + j ∗

l sin τ = η(τ) (4.7)

where η(τ) is a constant independent of the bond index l. Since the steady-state current j ∗
l = j ∗

is constant in space it also follows from (4.7) that the gradient density is site independent and
we can thus omit the l-subscripts. The steady-state current satisfies

j ∗ = 1

3
[−δ∗ sin τ + j ∗ cos τ ] +

2

3
j ∗ cos

τ

2
, (4.8)

which is equivalent to

j ∗ = − sin τ

3 − cos τ − 2 cos τ
2

δ∗ ≡ −κ(τ)δ∗ (4.9)

and defines the conductivity coefficient κ(τ). We now determine the constant η(τ) by
considering the boundary conditions. Remembering that the densities on the reservoir sites
are fixed and that the boundary terms j 0 and jN, which are initial correlations between the
reservoirs and the system, vanish due to the repeated interaction scheme, one sees that an
update on bond 0 (between left reservoir and boundary site) gives δ′

0 = 1
2δ0(1 + cos τ) whereas

an update on bond 1 gives δ′
0 = δ0 − 1

2 (δ1 cos τ + j1 sin τ − δ1). The steady-state average δ∗
0

must therefore obey

δ∗
0 = 1

2

(
δ∗

0
1 + cos τ

2

)
+

1

2

(
δ∗

0 − δ∗ cos τ + j ∗ sin τ − δ∗

2

)
(4.10)

giving η(τ) = (cos τ − 1)δ∗
0 . By symmetry, at the right boundary we find δ∗

N = δ∗
0 . Noting

that the reservoir density difference 
n ≡ nR − nL = 2δ∗
0 + (N − 1)δ∗, one finally gets for

the bulk steady-state density gradient

δ∗ = 
n

N + 1 + γ (τ)
(4.11)

with the finite-size shift function (extrapolation length)

γ (τ) = 2
sin τ

1 − cos τ
κ(τ ). (4.12)

This analytical expression is compared with numerical simulation data in figure 2 obtained on
chains of N = 30 spins and the agreement is seen to be excellent.

So far, we have considered the somewhat unphysical situation where the enhancement
of a local hopping rate always stays precisely for a time τ . This hypothesis leads to the
trigonometric form of the conductivity κ(τ) and shift function γ (τ). A more reasonable
assumption would be to draw the duration of a local fluctuation from a probability distribution
f (τ). In that case, one may average the dynamical equations for the current and the gradient
density over the time distribution f (τ) which basically leads to replacing the trigonometric
functions cos τ , sin τ and cos τ

2 by their expectations under f . For example, for an exponential
distribution of interaction timescales with mean τo, one obtains the shift function γ = (2/τo)κ

with conductivity κ = τ 2
o +4

3τo(τ 2
o +2)

which is again in agreement with the numerical results, see

figure 2. In the limit of short-time interaction τo → 0, conductivity diverges as τ−1
o while
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Figure 2. Normalized steady-state density gradient as a function of the interaction time with a
delta time distribution on the left and an exponential one with mean τo on the right. The full lines
correspond to the analytical curves while the crosses are obtained numerically with a time average
of the density gradient.

the density gradient goes as τ 2
o . This leads to a linear vanishing of the steady-state current

j ∗ ∼ τo.
If lattice fluctuations are generated diffusively, e.g. the updated bond follows a symmetric

random walk, then analysing the dynamical equations along the same lines, we obtain again a
linear profile of the particle density in the steady state: δ∗ = 
ρ/(N + 1 + γ (τ)) where the
shift function γ (τ) depends on the precise definition of the random walk at the boundaries.

At finite, but small, unperturbed hopping rates tl = to along the optical lattice, we observe
numerically that the linear density profile survives. However, the density gradient is strongly
attenuated by a function of the bulk hopping rate to, whose asymptotic behaviour is (Nto)

−1 for
large lattice sizes. Consequently, for large systems the steady-state density gradient behaves
as δ∗ ∼ 1/N2 instead of the former 1/N behaviour. At the same time, the steady-state current
is j ∗ ∼ 1/N which leads to a linear divergence of the conductivity coefficient with system
size: κ ∼ j ∗/δ∗ ∼ N . This implies that the classical transport properties of the hard-core
boson gas are induced by the optical lattice fluctuations only for sufficiently small Nto values.
In the thermodynamical limit, N → ∞, the system shows a ballistic transport behaviour. See
[13] for a similar discussion.

5. Conclusion

We have derived analytical expressions for the steady-state conductivity and density profile of
a nonequilibrium hard-core boson model. For a perfect optical lattice, due to the integrability
of the model, the transport properties are anomalous with an infinite conductivity coefficient,
reflecting the ballistic nature of the excitations. On the other hand, when fluctuations of the
underlying lattice are present and when Nto is sufficiently small, the classical Fourier law is
recovered, with a linear density profile and a finite conductivity coefficient depending on the
lattice fluctuation properties.
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Fourier’s law in nature is so wide-spread that specific choices of model parameters
should not play a decisive role in deriving it. Consequently, we do not believe that the
dynamical fluctuations considered in the present paper have to be the generic origin of normal
heat conduction. In general, it is believed that the basic microscopic mechanism leading to
Fourier’s law is linked to the scattering of energy carriers, inducing mixing properties. Indeed,
since the thermal conductivity, obtained from the Green–Kubo formula, is given by an infinite
integral of the autocorrelation function of the current operator, this correlator has to decay
quickly enough such that the integral converges even in the thermodynamic limit. In the
present work we have presented a possible way of how Fourier’s law can be established in
some limiting situations by introducing dynamical fluctuations which somehow scatters the
energy carriers. The origin of such fluctuations at the microscopic level can be of course
very diverse, such as for example a coupling to phonon modes or external perturbations like
vibrations of the mirors in an optical setup. The next step of this work will be the study of the
current autocorrelation function to compare our results for the conductivity coefficient with
the Green–Kubo expectation, see for example [24] for a study in this spirit.
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